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ABSTRACT 17 

The current Geostationary Operational Environmental Satellites (GOES-16 and 17) 18 

cloud-top phase classification algorithm is based primarily on empirical thresholds at 19 

multiple wavelengths that have varying absorption capabilities for water and ice. The 20 

performance of current GOES-16 cloud-top phase product largely depends on the accuracy of 21 

the selection of reflectance ratios. This study aims at presenting a novel cloud-top phase 22 

classification algorithm (the Multi-channel Imager Algorithm, MIA) that provides a more 23 

judicious selection of relationships between channels using a supervised K-mean clustering 24 

method on multi-channel Red-Green-Blue images. The K-mean clustering method works 25 

analogously to how human eyes separate different colors in a microphysical color rendering 26 

set of satellite images, which differentiates water, ice and unclassified thin clouds. For water 27 

phase, cloud-top temperature information is used to further distinguish supercooled water. To 28 

evaluate the performance of the MIA, an extensive comparison with Cloud-Aerosol Lidar 29 

with Orthogonal Polarization (CALIOP), Moderate Resolution Imaging Spectroradiometer, 30 

and current GOES-16 cloud-top phase products is conducted, using CALIOP as the 31 

benchmark. Compared to the current GOES-16 cloud-top phase product, MIA demonstrates a 32 

substantial improvement in phase classification, where hit rate increases from 69% to 76% 33 

over the Continental United States and 58% to 66% over the full disk domain.  34 

1. Introduction 35 

The work of retrieving satellite cloud phase product has been ongoing for decades and 36 

is essential for our understanding of the global radiation budget, weather, and hydrological 37 

cycles (Liou 1986; Wielicki et al. 1995). In addition, the presence of supercooled water 38 

presents an acute threat to aviation safety due to the risk of aircraft icing (Ellrod and Bailey 39 

2007; Smith et al. 2012). As such, real-time knowledge of cloud phase is highly desirable. 40 

Owing to the sparseness of available in-situ observations of cloud phase, much attention has 41 
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been devoted to deriving cloud phase information with large scale coverage from remote 42 

sensing observations. 43 

Satellite cloud phase retrieval methods include using active sensors, which emit their 44 

own radiation directed at the intended targets. Examples of such sensors include the Cloud-45 

Aerosol Lidar with Orthogonal Polarization (CALIOP) onboard the Cloud-Aerosol Lidar and 46 

Infrared Pathfinder Satellite Observations (CALIPSO) satellite, and the cloud-profiling radar 47 

onboard CloudSat (Cesana et al. 2016; Choi et al. 2010; Hu et al. 2010; Hu et al. 2009; 48 

Kikuchi et al. 2017; Peterson et al. 2020; Tan et al. 2014; Winker et al. 2010; Yuan et al. 49 

2010) . Active satellite sensors are advantageous in that they can provide information about 50 

both the cloud-top phase and the vertical phase distribution within clouds up to the signal 51 

saturation limit (e.g., in the case of CALIOP, up to optical thicknesses of approximately 5; 52 

(Winker et al. 2010)). However, these sensors only have sparse global coverage. Other 53 

attempt includes using multiple satellite product corrected cloud-top phase product (Chen and 54 

Sun 2019; Noh and Miller 2018) and etc.  55 

Conversely, satellites with passive sensors only measure radiation emitted or reflected 56 

by targets. Compared to the aforementioned active sensors, these sensors offer wider data 57 

swaths and thus provide better global coverage. Examples of passive sensors onboard 58 

satellites include the Geostationary Operational Environmental Satellite 16/17 (Miller et al. 59 

2014), geostationary Himawari-8 Satellite (Takahashi 2012), Second-generation Global 60 

Imager (Nakajima et al. 2019), Polarization and Directionality of the Earth’s Reflectances 61 

(Weidle and Wernli 2008), Moderate Resolution Imaging Spectroradiometer (Marchant et al. 62 

2016; Morrison et al. 2011; Naud et al. 2006), Atmospheric Infrared Sounder (Naud and 63 

Kahn 2015), and Advanced Very High Resolution Radiometer (Carro-Calvo et al. 2016). 64 

However, since the passive identification of cloud phase depends on emitted or reflected 65 

shortwave infrared information, only cloud-top phase can be obtained (Hu et al. 2009).  66 
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Geostationary satellites offer the additional benefit of continuous tracking and 67 

characterization of cloud systems. Thus, application of a cloud-top phase algorithm to 68 

geostationary satellite data permits the evolution of cloud-top phase of individual clouds and 69 

cloud systems to be observed in space and time, which is advantageous for both the modeling 70 

community and real-time weather forecasters. The current GOES-16 cloud-top phase product 71 

(described in further detail in section 2.3) essentially uses reflectance ratios from various 72 

near-infrared channels to infer the cloud-top phase. However, the actual values of such ratios 73 

can vary between different clouds, illumination levels, and viewing geometries that are not 74 

accounted for by the present algorithm. Thus, the algorithm’s accuracy is heavily dependent 75 

on how thresholds for these ratios are selected. 76 

In this paper, we develop a new cloud-top phase algorithm—the Multi-channel 77 

Imager Algorithm (MIA)—for use with geostationary satellite data. The MIA attempts to 78 

improve upon the existing GOES-16 classification approach and more flexibly and 79 

comprehensively account for these ratios and other factors by applying a supervised machine-80 

learning method that uses multiple GOES-16 satellite channels. Although the algorithm 81 

introduced in this paper has only been tested on GOES-16 data, equivalent principles can be 82 

easily applied to the GOES-17, Meteosat Third Generation from Europe, and Himawari-8/9 83 

from Japan, which collectively cover most of the globe.  84 

The rest of this paper is organized as follows. Descriptions of the existing cloud-top 85 

phase data that the MIA is compared against are presented in section 2, while a full 86 

description of the MIA is provided in in section 3. Section 4 presents the results of these 87 

comparisons, as well as a discussion about factors that may inhibit the MIA’s performance in 88 

certain circumstances. This study’s findings are summarized and future work is proposed in 89 

section 5. 90 
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2. Data 93 

2.1. Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) 94 

CALIOP is a dual-wavelength (532 nm and 1064 nm) depolarization lidar (Hunt et al. 95 

2009) onboard the CALIPSO satellite. Since absorption by water and ice hydrometeors is 96 

minimal at both of these wavelengths, CALIOP determines cloud phase using the 97 

depolarization of backscattered light, which can be used as a good proxy for cloud phase 98 

classification (Hu et al. 2009). The underlying assumption is that all water particles are 99 

spherical, while ice particles are not and subsequently result in some degree of depolarization 100 

(Hu et al. 2001). The latest version of the CALIOP cloud phase product inherited the layer-101 

integrated depolarization ratio method from prior versions and added the spatial correlation of 102 

layer-integrated attenuated backscatter as a key parameter for differentiating anisotropic ice 103 

crystals from water particles, which can account for as much as a 20% improvement of 104 

overall ice cloud observation (Hu et al. 2009). Although the latest CALIOP cloud-phase 105 

product shows real promise in its ability to  separate randomly and horizontally oriented ice 106 

crystals over past versions, there is still room for improvement for thin ice clouds with low 107 

signal-to-noise ratios and clouds with discontinuous layers (Hu et al. 2009).  108 

In this study, the CALIOP Lidar Level 2 Vertical Feature Mask (VFM) Version 4-20 109 

cloud phase product is used as the benchmark for evaluating the other examined algorithms 110 

as well as the proposed MIA. The phase classifications at 333-m, 1-km, and 5-km resolutions 111 

are merged to create a composite phase product for evaluation(Winker et al. 2006).  The 112 

importance of merging the 1-km and 5-km resolution data from CALIOP for phase 113 

classification is discussed in Marchant et al. (2016); here, we also incorporate the 333-m-114 
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resolution data to retain as much detailed phase information as possible. By default, 115 

CALIOP’s phase classification algorithm includes a normal ice phase, a horizontally oriented 116 

ice phase, and a liquid water phase. In this study, the normal ice phase and horizontally 117 

oriented ice phases are combined and treated as a single ice phase to facilitate comparisons 118 

with other algorithms with a single ice category. 119 

2.2. Moderate Resolution Imaging Spectroradiometer (MODIS) 120 

The MODIS instruments onboard the polar-orbiting Terra and Aqua satellites have 121 

been operating since 1999 and 2002, respectively. MODIS measures reflected and emitted 122 

radiation at 36 spectral channels ranging from 405 nm to 14.385 µm with a spatial resolution 123 

of 1 km at nadir (Justice et al. 1998).  124 

In this study, we evaluate the daytime portion of the latest MODIS Atmosphere 125 

Level-2 Cloud Product (MYD06_L2; Marchant et al. 2016) from Aqua satellite (ascending 126 

daytime). This algorithm uses a simple majority vote logic using the (1) 1-km cloud-top 127 

temperature, (2) 1-km IR cloud phase, (3) 1.38-µm cirrus detection test for cloud masking, 128 

and (4) 1.6-, 2.1-, and 3.7-µm channel derived cloud-top effective radius based on thresholds 129 

derived from previous comparisons with CALIOP. The key improvement in the current 130 

version is the use of composite look-up tables for ice and water using all three cloud effective 131 

radius retrievals, which inherently account for viewing angle geometry and cloud optical 132 

thickness. Parameters (1), (2), and (3) otherwise primarily serve as a sanity check. Other 133 

differences with respect to the previous version include the use of the IR cloud phase instead 134 

of emissivity ratios for parameter (2), the removal of the shortwave IR ratio threshold limit 135 

that was affected by instrument differences (Marchant et al. 2016), and an updated decision 136 

logic. MYD06_L2 phase product includes clear sky, liquid water, undetermined phase, and 137 

ice phase classifications. In this study, only liquid water and ice phases are selected for 138 

comparison with CALIOP.  139 
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2.3. Geostationary Operational Environmental Satellite 16 (GOES-16) 140 

The instrument of most relevance onboard the GOES-16 satellite is the Advanced 141 

Baseline Imager (ABI). The ABI is the primary imaging instrument and includes 16 spectral 142 

bands with wavelengths ranging from 0.47 µm to 13.3 µm. The horizontal resolution of 143 

bands ranges from 0.5 km to 2 km (Schmit et al. 2017). In this study, all ABI data with finer 144 

resolutions are converted to a 2-km resolution for simplicity and consistency. The temporal 145 

resolution for GOES-16 data ranges from 60 s (e.g., in the Mesoscale Domain Sector, MDS) 146 

to 5 min (e.g., for the Continental United States, CONUS) and 10 min (e.g., for the full disk, 147 

FD). Although the high temporal resolution in the MDS would likely permit cloud-top phase 148 

classifications even for fast evolving clouds, its odds of being collocated with the CALIOP 149 

and MODIS overpasses are scarce. Therefore, the cases selected in this study use only the 150 

CONUS and FD resolutions.   151 

The current GOES-16 ABI Cloud-top Phase (ACTP) product uses a two-layer cloud 152 

model composed of liquid and ice phases for classifying cloud-top phase (Miller et al. 2014). 153 

The accompanying look-up tables are based on Santa Barbara DISORT Atmospheric 154 

Radiative Transfer (SBDART) calculations for cloud optical thickness, cloud-top effective 155 

radius, and Sun/satellite geometry (Ricchiazzi et al. 1998). The ACTP’s assumption for cloud 156 

phase detection is that the reflectance ratios (at 1.6 and 2.2 µm) of the ABI input data and an 157 

idealized all-liquid cloud behave similarly. The accuracy of the ACTP is strongly related to 158 

the assumed reflectance ratio thresholds and is likely subject to failures due to sub-pixel 159 

heterogeneity. As an additional input, the ABI clear-sky mask (ACM) level-2 product from 160 

GOES-16 is included as a measure to mask non-cloudy pixels (Heidinger and Straka 2012). 161 

The ACM provides a binary clear or cloudy mask generated every 5 min for the CONUS and 162 

10 min for the FD at a spatial resolution of 2 km. The ACM thresholds were trained by data 163 

from the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) onboard the Meteosat 164 
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collocated with the CALIPSO retrieval products. A preliminary ACM test shows a 91.4% of 165 

correct detection of clear or cloudy state using an 8-week dataset distributed among four 166 

seasons (Heidinger and Straka 2012). A detailed overview of ACM performance can be 167 

found in Jiménez (2020). The output of the ACTP classification includes clear sky, liquid 168 

water, supercooled water, mixed phase, and ice with a 2-km resolution. A detailed description 169 

of the ACTP product can be found in Miller et al. (2014). In this study, only liquid water and 170 

ice phase are selected in comparison with CALIOP.   171 

 172 

3. Algorithm description 173 

A flowchart describing the overall MIA algorithm logic is presented in Figure 1. As 174 

mentioned from 2.3, the input data for MIA are Level 1 observations from ABI onboard 175 

GEOS-16 at: the visible bands at 0.47 µm, near-infrared bands 1.6 µm, and 2.2 µm are used 176 

for the daytime microphysical Red-Green-Blue (DMRGB) color scheme calculation (detailed 177 

in section 3.1), while the infrared bands at 11.2 µm and 12.3 µm are used for the cloud-top 178 

temperature calculation (detailed in section 3.3).  179 

3.1.Daytime microphysical RGB (DMRGB) 180 

The physical basis for the DMRGB is shown in Figure 2, which shows the imaginary 181 

part of the refractive index (a measure of the degree of absorption) for water and ice at 182 

different wavelengths. The differences in absorption capabilities between ice and water vary 183 

with wavelength. For instance, at a wavelength of 1.6 µm (what we consider the red channel), 184 

ice absorption is almost an order of magnitude larger than that of water, while at 2.25 µm 185 

(what we consider the green channel) water is more absorptive than ice. The opposite 186 

absorption responses of ice and water at these two wavelengths allows us to easily highlight 187 

the sharp differences between water and ice in the RGB composite. This approach is unlikely 188 

to work as well using MODIS data because the green channel in MODIS is at a wavelength 189 
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of 2.1 µm (Figure. 2), which exhibits similar absorption differences between water and ice as 190 

the 1.6 µm wavelength. Therefore, MODIS does not create a color contrast between water 191 

and ice clouds if the DMRGB scheme is applied. 192 

Figure 3a shows an example RGB composite using the DMRGB bands (i.e., 1.6, 2.2, 193 

and 0.47 µm reflectance in the red, green and blue beams, respectively). The DMRGB color 194 

scheme takes advantage of the different absorption capabilities of ice and water between 195 

these three bands to highlight cloud top phase information. This method follows the same 196 

principle as the RGB schemes in Lensky and Rosenfeld (2008). In this color scheme, ice 197 

appears bluish (region A in Fig. 3a) because of its large reflectance at 0.47 µm for ice crystals 198 

and strong absorption at 1.6 µm and 2.25 µm (i.e., the extinction of red and green). Water 199 

clouds appear pinkish (region B in Fig. 3a) because of the relatively large reflectance at 0.47 200 

µm for water and its much weaker absorption at 1.6 µm compared with ice crystals (up to an 201 

order of magnitude difference as shown in Figure 2). Bare ground (region C in Fig. 3a) 202 

appears brown because of land’s larger reflectance at 2.2 µm than that at 0.47 µm. Ocean 203 

(region D in Fig. 3a) appears black because of the low reflectance of all three beams.  204 

3.2.K-mean clustering  205 

Before using K-mean clustering, DMRGB image needs to be converted to Lab color 206 

space, where ―L‖ represents luminosity layer and ―a‖ and ―b‖ represent chromaticity layers 207 

that fall along the red-green and blue-yellow axes, respectively (Jain 1989). This conversion 208 

is derived from the commission on illumination Lab color space tri-stimulus values. In this 209 

study, we use the ―rgb2lab‖ function in Matlab for the conversion from RGB to L.a.b. This 210 

conversion helps to downscale the 3D dimensional RGB to 2D dimensional red-green and 211 

blue-yellow table, which is required for K-mean clustering in the next step.   212 

K-mean clustering method is only applied to the ―ab‖ color space where color 213 

information exists; the luminosity layer is not required. The K-mean clustering process is a 214 



10 

machine-learning method for separating groups of objects and attributing each object to its 215 

closest cluster (Arthur and Vassilvitskii 2007), which in this study works analogously to how 216 

human eyes differentiate color groups. The Matlab function ―imsegkmeans‖ is used to 217 

perform the K-mean clustering, which segments the input ―a.b‖ color space into three clusters 218 

and returns the segmented labels. After an initial trial, the number of clustering attempts is 219 

limited to 20 to avoid worst sub-optimal local minima and false classifications, but this 220 

parameter is customizable depending on user needs. 221 

 Figure 3b shows a density map of the chromatic ab layers of Figure 3a, where three 222 

pronounced clusters are observed. Figure 3c shows the corresponding cluster separation 223 

estimated from the K-mean clustering process, resulting in three clusters shown in red, green, 224 

and blue for ice clouds, optically unclassified thin clouds, and water clouds, respectively (See 225 

3.1. for RGB color scheme). Cloud free pixels (based on the ACM) are excluded. Figure 3d 226 

shows the true color extracted from Figure 3a at each red-green and blue-yellow grid point. 227 

The bluish color representing the ice phase primarily resides in the lower-left portion of 228 

Figure 3d, while the yellow-purple liquid phase pixels dominate the other half of the same 229 

panel. The light-yellow end represents clouds with small droplets, whereas the purple end 230 

represents clouds with relatively large droplets.   231 

After K-mean clustering, cloud pixels are segmented into clusters corresponding to 232 

cloud-top phase. Ideally, given the unique hazard posed by supercooled water, three separate 233 

clusters would represent warm water, supercooled water, and ice. Since DMRGB channel 234 

combination is only visibly sensitive to the distinguishing of liquid and ice phases, it is hard 235 

to separate warm water from supercooled water without cloud-top temperature information. 236 

The final step is to apply cloud-top temperature information to all three clusters. Cloud-top 237 

temperature is retrieved using the same principle as described in Rosenfeld and Lensky (1998) 238 

using brightness temperature information. For liquid pixels, pixels with cloud-top 239 
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temperatures over 273.15 K are classified as warm water while pixels colder than 273.15 K 240 

are considered supercooled water. The cloud-top phase output is then recorded.  241 

4. Algorithm evaluation 242 

To evaluate the performance of MIA, here we present comparisons of the cloud-top 243 

phase MIA output (hereafter CTP_MIA) to the current official GOES-16 cloud-top phase 244 

product (hereafter CTP_GOES), along with collocated cloud-top phase retrievals from 245 

MODIS (hereafter CTP_MODIS) and CALIOP (hereafter CTP_CALIOP), the latter of which 246 

serves as the benchmark for evaluation.  247 

In order to test the robustness of MIA, 28 cases from all 4 seasons in 2019 were 248 

selected (Table 1). A case is defined as a single half north-to-south CALIOP track that passes 249 

over FD and CONUS domains and contains clouds. In instances where multiple tracks 250 

overpass FD and CONUS, the one with the most cloud cover is selected. The criteria for case 251 

selection are twofold: (a) there are obvious weather systems along the tracks of CALIOP and 252 

MODIS overpasses, and (b) the difference in time between the CALIOP and MODIS 253 

overpasses is less than 5 minutes.  CALIPSO and MODIS used to be synchronized with a 254 

time lag of less than 2 minutes. In 2018, they drifted apart, with only a subset of days now 255 

providing a match with a time lag of 5 minutes or less. In order to keep all seasons equally 256 

represented, we selected 7 cases from each season and selected a total of 28 cases in 2019 for 257 

validation in this study.  258 

MIA product case demonstration as an example. Figure 4 shows an example of the 259 

MIA output for 27 October 2019. Figure 4a shows the DMRGB map and Figure 4b shows the 260 

corresponding cloud-top phase output from the MIA after the clustering analysis is performed. 261 

The dotted lines overlapping from left to right represent CTP_CALIOP, CTP_ MODIS, 262 

CTP_GOES, and CTP_MIA, respectively. Figure 4c shows the cloud layer phase from 263 

CALIOP for this case. The leftmost dotted lines in Figures 4a and 4b represent the highest 264 
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altitude cloud phase recorded in Figure 4c (i.e. cloud-top phase). A first look between Figure 265 

4a and 4b indicates a reasonable clustering where bluish cloud pixels in Figure 4a are marked 266 

in blue (ice phase) and yellow to purple cloud pixels are marked in either pink or green 267 

(liquid phase). For instance, all bluish cloud clusters in Figure 4a are labelled as ice phase in 268 

Figure 4b. Moreover, even the isolated convective cells in South America are well captured. 269 

More insights are observed over the CONUS, where liquid phase cloud clusters are further 270 

separated and classified into supercooled liquid and warm water as shown by letters A and B 271 

in Figure 4b. The reason the MIA does not identify all of the pixels CALIOP does is that we 272 

are only interested in optically thick clouds. Because the MIA works in a similar fashion to 273 

human eyes, if one does not visually observe an optically thin cloud in DMRGB, MIA is 274 

unlikely to classify such pixels. Additionally, because CTP_MIA, CTP_CALIOP, 275 

CTP_GOES, and CTP_MODIS are retrieved from different satellite platforms, there are 276 

slight differences in recorded time between them.  277 

Pixel selection criteria used in this study. In this study, CALIOP is used as a 278 

benchmark. Two criteria were set for pixel selection for this comparison: (1) a time 279 

difference threshold of 5-minute (can be changed accord to users need) is set to eliminate 280 

pixels recorded too far away from CALIOP record time. As MODIS and CALIOP have 281 

recording times of each pixel, both can easily apply this time difference criterion. For GOES-282 

16, the average of starting and ending time is recognized as the record time for each GOES-283 

16 ABI file. As long as the GOES-16 record time is within 5 minutes of CALIOP recording 284 

time range, the GOES-16 data is used for phase processing and comparison; (2) only pixels 285 

classified as cloudy by the GOES-16 cloud mask are used as candidates for phase comparison 286 

against CALIOP. This means that if a pixel is classified as cloudy only by CALIOP but not 287 

by GOES-16, it will not be considered since there is no phase information from the GOES-16 288 
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side. Such a case usually occurs to optically thin clouds as shown in Figure 4c and is not a 289 

cloud of interest for MIA.  290 

Validation statistics. Boxplots of HIT_MIA (hit rate of MIA), HIT_GOES (hit rate 291 

of GOES), and HIT_MODIS (hit rate of MODIS) across FD (full disk, 10-minute resolution) 292 

and CONUS (continental US, 5-minute resolution) are shown in Figure 5a and 5b, 293 

respectively. As shown in Figure 5a for FD results, MIA median hit rate is 0.66 and standard 294 

deviation (STD) is 0.15, whereas HIT_GOES median is 0.58 (STD = 0.22) and HIT_MODIS 295 

median is 0.68 (STD = 0.13). This corresponds to 13.7% median hit rate improvements of 296 

MIA with respect to CTP_GOES.  Figure 5b shows the same statistics for CONUS, where 297 

MIA median hit rate is 0.76 and least STD of 0.11. The CONUS HIT_GOES and 298 

HIT_MODIS median values are 0.69 and 0.77 with STD values of 0.17 and 0.13, 299 

respectively. These results correspond to a significant improvement for CTP_MIA with 300 

respect to CTP_GOES. There is a clear improvement in CTP_MIA skill for the CONUS 301 

domain versus the FD, which is likely due in part to the higher temporal resolution of the 302 

CONUS data. CTP_MODIS outperforms CTP_MIA by marginal percentages.  303 

Geometry effect on phase classification accuracy. To explore the effect of solar 304 

zenith angle (SolZ) and satellite zenith angle (SatZ) on algorithm performance, the hit/miss 305 

records of data points from all the selected cases are grouped into 10-degree bins of SolZ and 306 

SatZ (Figure 6). It is evident that the accuracy of all three algorithms decreases as SolZ and 307 

SatZ increase, which is expected as reflectance data tend to be degraded at higher latitudes 308 

and further away from nadir. As shown in Figures 6a and 6b, HIT_MIA generally provides a 309 

better median hit rate than HIT_GOES does, except at low values of SatZ and SolZ. A similar 310 

story is seen for the FD domain, HIT_MIA generally has better relative accuracy than 311 

HIT_GOES. CTP_MIA shows increasing skill relative to CTP_GOES and CTP_MODIS at 312 
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higher values of SolZ and SatZ in the FD domain (Figure 6c and 6d). HIT_MODIS generally 313 

outperforms HIT_MIA along SolZ and SatZ gradient.  314 

 Understanding of the discrepancies between MIA and CALIOP. To further 315 

analyze the causes of discrepancies between CTP_MIA and CTP_CALIOP, pixels where the 316 

two disagreed from all cases are presented in Figure 7. Figure 7a shows that the majority of 317 

the disagreements occur when the CTP_CALIOP output is ice and the CTP_MIA output is 318 

water. At these pixels, the cloud-top temperature difference (Figure 7b) between CTP_MIA  319 

(using GOES-16's cloud-top temperatures) and CTP_CALIOP (using CALIOP’s cloud-top 320 

temperatures) is positive and ranges from close to 0 K to 112 K, which means most points 321 

with disagreement between CTP_CALIOP and CTP_MIA have much colder cloud-top 322 

temperatures from CALIOP than MIA. This is direct evidence that CALIOP is sensitive to 323 

high and cold transparent cirrus clouds while MIA is not, which is as expected since 324 

CTP_CALIOP uses active lidar measurements and is sensitive to optically thin cirrus clouds. 325 

The objective of MIA is to classify optically thick clouds, and we believe such discrepancies 326 

between CTP_MIA and CTP_CALIOP provide the correct phase for the tops of optically 327 

thick clouds. In contrast, the disagreement of pixels where CTP_MIA has ice and 328 

CTP_CALIOP has water are relatively rare. The corresponding cloud-top temperature 329 

differences for this scenario are shown in Figure 7b.   We suspect this is caused by 330 

differences in the temporal resolution, which can be as large as 5 minutes in this study. The 331 

CALIOP cloud-tops are mostly much colder than the GOES-16 cloud-tops when they 332 

disagree with respect to the CTP. 333 

A first look at MIA’s performance after deleting multi-layer cloud pixels. Finally, 334 

we performed a preliminary test of MIA’s performance after reducing the temperature 335 

discrepancies shown in Figure 7. As previously mentioned, the primary source of these 336 

discrepancies is believed to be multi-layer clouds. Lensky and Rosenfeld (2008) showed that 337 
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the difference in brightness temperature between 10 µm and 12 µm is a robust indicator of 338 

optically thin clouds. Here, brightness temperature difference for cirrus (BTD_Cirrus) is 339 

defined as the difference between GOES-16 12.3-µm and 10.4-µm brightness temperatures. 340 

In order to tackle this problem, we generated a density map of the relationship between 341 

BTD_Cirrus and the cloud-top temperatures difference between CALIPSO and GOES-16 342 

(T_diff). Figure 8a shows that most (around 73%) of these pixels are concentrated where both 343 

BTD_Cirrus and T_diff are near zero, representing optically thick clouds without overlying 344 

thin layers where the algorithms should in theory agree well. We then selected only the pixels 345 

with -10<T_diff<2 and BTD_Cirrus>-2, shown as the red rectangle in Fig. 8a. Figures 8b and 346 

8c show similar boxplot patterns as Figure 5 for the selected pixels. The boxplots from both 347 

Figure 8b and 8c show significant CTP_MIA median hit rate (CONUS: 91%; FD: 88%) 348 

improvements over CTP_GOES (CONUS: 88%; FD: 70%) for both FD and CONUS. It is 349 

worth noting that after applying the T_diff and BTD_Cirrus restrictions, the remaining pixels 350 

represent the ideal accuracy of MIA compared to CALIOP. Since CALIOP availability is 351 

limited by its spatial coverage and temporal resolution, we cannot rely on active sensors to 352 

assist with this kind of correction for operational weather satellites. This comparison serves to 353 

explain the causes of phase classification discrepancies when they occur, and to bolster 354 

confidence in favor of the MIA determination in such cases. 355 

5. Conclusion 356 

In this study we present a novel Multi-channel Imager Algorithm for classifying the 357 

phase of optically thick cloud-tops. This algorithm has the potential to greatly benefit the 358 

modeling community by providing not just accurate but also continuous cloud-top phase 359 

information. MIA is based on a supervised K-mean clustering method with added cloud-top 360 

temperature information, which partitions the cloudy pixels into ice, supercooled water, and 361 

warm water phases. The MIA demonstrated substantial improvements compared to the 362 
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current GOES-16 and MODIS cloud-top phase products using CALIOP phase retrievals as a 363 

benchmark. In particular, based on the 28 selected cases in 2019, the median hit rate for 364 

CONUS increased from 69% to 76% for GOES-16 when using the current phase product and 365 

MIA, respectively (the respective numbers for the FD are 58% to 66%). The performance of 366 

all methods degrade with increasing satellite and solar zenith angles. However, MIA shows 367 

the least degradation, especially near the high end of the angles. 368 

Most of the remaining pixels where MIA classification did not agree with CALIOP’s 369 

can be explained by a large discrepancy between cloud-top temperatures from GOES-16 and 370 

CALIOP. This temperature discrepancy occurred either due to mismatch of the field of view 371 

or due to CALIOP observing optically thin clouds, such as cirrus, above optically thick 372 

clouds at lower heights. Such a thin upper cloud layer is practically transparent to GOES-16 373 

satellite, which instead quantifies the properties of the underlying optically thick clouds. 374 

While a cause of algorithm discrepancies, these optically thin clouds (with geometric 375 

thicknesses less than 150 m) have negligible contributions to surface precipitation, which is 376 

dominated by clouds with larger geometrical thicknesses (Fan et al. 2020). When only 377 

comparing pixels with temperature agreement within 12 K and eliminating thin cirrus, the 378 

median hit rate increased to 88% for the GOES-16 algorithm and 91% for the MIA. The 379 

respective numbers for the FD are 70% and 88%. These high accuracies are validated by 380 

CALIOP, but the disadvantage is that we cannot rely on CALIOP’s assist in operation due to 381 

its limited time/space coverage. 382 

Finally, although MIA presents substantial improvements compared to the current 383 

GOES-16 phase product, we are planning to further improve the algorithm by using neural 384 

networks. The current MIA requires DMRGB generation and training at each snapshot, and is 385 

unlikely to meet real-time needs. Our next goal is to use the current MIA output as a training 386 
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dataset and to introduce all ABI channels to neural network training. That will allow us to 387 

generate improved cloud phase classification in real time.  388 
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420 Appendix A: List of variables and their descriptions 

421 ABI                          Advanced Baseline Imager 

422 ACM                       Advanced Baseline Imager Clear sky mask 

423 ACTP                      Advanced Baseline Imager Cloud-top Phase 

424 AIRS                       Atmospheric Infrared Sounder 

425 AVHRR                  Advanced Very High Resolution Radiometer 

426 BTD_Cirrus            Difference between GOES 12.3 µm and 10.4 µm brightness         

427 temperatures 

428 CALIOP                 Cloud-Aerosol Lidar with Orthogonal Polarization 

429 CALIPSO               Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations 
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CONUS                  Contiguous United States 430 

CTP_ CALIOP       CALIOP cloud-top phase 431 

CTP_ MIA              MIA cloud-top phase 432 

CTP_GOES            GOES-16 cloud-top phase 433 

CTP_MODIS          MODIS cloud-top phase 434 

DMRGB                 Daytime microphysical RGB 435 

FD                          Full disk 436 

GOES-16               Geostationary Operational Environmental Satellites 16 437 

Himawari              Geostationary weather satellites operated by the Japan Meteorological 438 

Agency 439 

HIT_ CALIOP      CALIOP hit rate 440 

HIT_ MIA            MIA hit rate 441 

HIT_GOES          GOES-16 hit rate 442 

HIT_MODIS        MODIS hit rate 443 

Lab                     Color space defined by the International Commission on Illumination 444 

LUTs                    Lookup tables 445 

MDS                    Mesoscale Domain Sector 446 

Meteosat              European meteorological program in Geostationary Orbit 447 

MIA                     Multi-channel Imager Algorithm 448 

MODIS                  Moderate Resolution Imaging Spectroradiometer 449 

POLDER               Polarization and Directionality of the Earth’s Reflectances 450 
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RGB                      Red Green Blue  451 

SatZ                    Satellite zenith angle 452 

SBDART              Santa Barbara DISORT Atmospheric Radiative Transfer 453 

SEVIRI                 Spinning Enhanced Visible and Infrared Imager 454 

SolZ                    Solar zenith angle 455 

STD                      Standard deviation 456 

T_diff                   Cloud-top temperatures 457 

VFM                     Vertical Feature Mask 458 

 459 

 460 
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TABLES 560 

Winter Spring Summer Fall 

20190108 20190308 20190613 20190917 

20190110 20190309 20190614 20190918 

20190130 20190328 20190702 20191005 

20190217 20190329 20190720 20191007 

20190218 20190416 20190721 20191025 

20191220 20190506 20190808 20191027 

20191221 20190524 20190810 20191114 

   561 

 562 

Table 1. Cases selected for performing the CTP_MIA, CTP_GOES, CTP_MODIS, 563 

and CTP_CALIOP comparison. 564 

 565 
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FIGURES 577 

 578 

Figure 1. Multi-channel Image Algorithm general logic flowchart. 579 
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 580 

Figure 2. Imaginary part of the refractive index of ice and water as a function of 581 

wavelength between 0.25 and 2.5 µm. Each pair of colored vertical lines corresponds to 582 

the marked channel wavelength range.  583 
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 584 

Figure 3. (a) Daytime microphysical RGB map and (b) the corresponding pixel 585 

density map of the chromaticity layers along the red-green axis in the abscissa and blue-586 

yellow axis in the ordinate. The K-mean clustering output of (b) is shown in (c) as water 587 

phase (blue), unclassified optically thin clouds (green), and ice clouds (red). The real 588 

color RGB distribution from (a) along the chromatic layers is shown in (d). The 589 

contours in panels (c) and (d) represent the pixel density as shown in (b). 590 

 591 
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 592 

 593 

Figure 4. (a) DMRGB overlapped with CTP_CALIOP, CTP_MODIS, CTP_GOES, 594 

and CTP_MIA (dotted lines from left to right). Red dots are ice phase pixels and blue 595 

dots are liquid phase pixels. (b) CTP_MIA mask overlapped with identical dotted lines 596 

as in (a). In (b), pink shading is liquid phase, green shading is supercool liquid phase, 597 

and blue shading is ice phase. (c) CALIOP vertical phase mask overlapped with 598 

identical dotted lines as in (a) and (b), where DMRGB is the top line. 599 

 600 

Figure 5. Boxplots of HIT_MIA, HIT_GOES, and HIT_MODIS for both FD (a) and 601 

CONUS (b) domains.  602 
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 603 

Figure 6. Median hit rate distributions for CTP_MIA, CTP_GOES, and 604 

CTP_MODIS with respect to the range of solar and satellite zenith angle covered by 605 
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CONUS and FD data. 606 

 607 

Figure 7. (a) Histogram of CTP_MIA phase pixels that are different from 608 

CTP_CALIOP. (b) The cloud-top temperature difference distribution for cases when 609 

(blue) CTP_MIA has water and CTP_CALIOP has ice and when (orange) CTP_MIA 610 

has ice and CTP_CALIOP has water. 611 

 612 

Figure 8. (a) Density map of temperature difference between GOES-16 and 613 

CALIPSO versus brightness temperature difference between 12.3 µm and 10.4 µm. (b) 614 

Boxplots as in Figure 5 after the multi-layer cloud correction for FD and (c) CONUS.  615 
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